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Abstract, Expressions for the dipolar and hyperfine contributions to the relaxation rate of
muons implanied in a ferromagnet are presented. and analysed using the Heisenberg model
of spin waves including dipolar and Zeeman energies. Calculations for EuQ indicate that
the temperature dependence of the hyperfine and dipolar contributions o the relaxation
rate are similar, so the latter contribution will dominate if the ratio of the hyperfine and
dipolar coupling constants is indeed very small. The hvperfine mechanism is sensitive io the
dipolar energy of the atomic spins, whereas the dipolar mechanism depends essentially on
the exchange energy. For both mechanisms there is an almost quadratic dependence on
temperature, throughout much of the ordered magnetic phase, which reflects two-spin-wave
difference events from the Raman-type relaxation processes,

1. Introduction

Recent reutron scattering experimentson ordered ferromagnets have rekindled interest
in the static and dynamic properties of longitudinal spin fuctuations, i.e. components
paraliel to the easy axis. In the experiments, these are cleanly separated from transverse
fluctuations by the use of polarization analysis. Data for insulating and metallic ferro-
magnets, just below the critical temperature (T,), collected for small wavevectors
(k~ 0.1 A"") reveal a quasi-elastic response and no inelastic scattering at the spin-
wave energy, even though spin-wave resonances are clearly defined in the transverse
fluctuations (Mitchell ef al 1984, Mitchell er af unpublished, Bomi et af 1991). These
findings contrast with conclusions drawn from earlier unpolarized neutron scattering
dataon Fe,Niand EuQ, namely that, unlike antiferromagnets, the longitudinal response
S(k, w} is predominantly inelastic, i.e. a minimum at w = 0.

The dependence of the longitudinal spin response on the magnitude of an external
field (required in the experiments to produce a unique easy axis and to prevent severe
depolarization) is of interest in view of well established results for the longitudinal
susceptibility x(k), related to the integral of S(k, w)/w, to the effect that it diverges
in the limit of a vanishing field or wavevector. Spin-wave theory of a Heisenberg
ferromagnet, for example, predicts ¥(0) o #2712 when the field #— 0, and y(k) < k™!
for 7 =0and k— 0. Boni e/ af (1990) find for Ni at T = 0.987T, that the longitudinal
intensity decreases moderately on increasing the field by a factor of 3. Nor have previous
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experiments unambiguously detected divergent behaviour in (k). Koétzler and Muschke
(1986) report an indication of y(0) = £~ behaviour in an analysis of bulk data for EusS.
Neutron diffraction experiments on EuO (Passell et al 1976) and a disordered alloy
palladium/10% iron (Mitchell et al 1984) also reveal non-divergent behaviour of the
susceptibility. The expression for S(&, @) derived from spin-wave theory (Lovesey
and Trohidou 1991) possesses a field-limited enhancement at the spin-wave dispersion
frequency, and appears to be at odds with the recent polarized neutron scattering data
just described. Moreover, it can be shown that dipolar forces do not annul the (1/k)
behaviour of y(k) for small k, but x(0) is finite and depends on the shape of the sample.

Although Vaksetra/ (1968) argue that spin-wave results for (k) and S(k, @) evaluated
for small k and w should be useful over a wide range of temperatures, perhaps these
estimates arc not reliable quite so close to 7, as in the existing neutron scattering
experiments. It would be valuable to have data at lower temperatures, where spin-wave
theory can be applied with confidence, and to identify the temperature at which the
theory becomes inadequate,

To this end. the technique of muon spin relaxation (1sSR) has some attractive features
(Cox 1987). The relaxation of the muon signal is directly related to S(&, @) and experi-
ments can be performed with zero or a very small Larmor precession frequency, w, <
1 eV, Here we present results for the relaxation rate A calculated with spin-wave theory
applied to 2 Heisenberg ferromagnet. The model includes dipolar forces and an external
magnetic field.

The properties of muons implanted in an ordered ferromagnetic are reviewed in the
nex{ section, with a view to an experiment on EuO. Ferromagnetic spin-wave theory is
sketched in section 3, and the presentation largely follows Keffer (1966) and Lovesey
(1987). The muon relaxation rate is calculated in section 4. It is argued that the muon
Larmor frequency can be set to zero in the theory, to a good approximation, In view of
this, the relaxation rate is determined by so-called Raman spin-wave scattering events,
and A = X S(k, 0). An expression for A is derived using linear spin-wave theory, and its
behaviour as functions of the dipolar forces, magnetic field and temperature is estab-
lished using analytical and numerical techniques. Conclusions are gathered in section 5.

2. Muon spin relaxation experiments

The majority of information onspin fluctuations in magnetic materials has been obtained
by neutron beam experiments, which allow spatial as well as temporal characteristics of
the fluctuations to be determined. Although even very subtle effects, such as the infiu-
ence if dipolar interactions between the spins in the presence of much stronger exchange
interactions, can be observed in neutron scattering, the information obtained is not
always unambiguous, and additional information from other spectroscopies can be
helpful. Here it is argued that spin relaxation experiments using positive muons as
magnetic probes ¢an provide complementary information, in particular on the effects
on the longitudinal spin fluctuations in a magnetic material.

Muon spin relaxation (uSR) experiments have so far been carried out on a number
of magnetic materials, notably metallic magnets (for arevicw see, forinstance, Karlsson
(1990)) but also for a limited number of insulating materials (Holzschuh et af 1981,
Brewer et al 1981). The fluctuations of the atomic spins in the material are often obtained
indirectly through their magnetic coupling with a probe spin, in the present case that of
the 4™ whereas in nuclear magnetic resonance (NMR) a ligand nucleus might be
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monitored. In the analysis of usr data it is assumed that the implanted muon is a passive
probe, and the signal is truly representative of bulk properties in the absence of the
probe, i.e. uSR is regarded as a delicate and unobtrusive technique,

The relaxation of the muon spin is described by the same rate equations as in the
theory of NMR (Slichter 1990). The longitudinal relaxation time 7| is defined through
the exponential decay on an initial magnetization of the probe spin M,(0) directed along
the x axis,

M.(1) = M .(0) exp(_t/Tl ) (2.1)

The microscopic mechanism behind this polarization decay is that fluctuation fields B,(r)
and B,(1). perpendicular to the z direction, are acting on the probe spin and induce spin-
flip transitions. The longitudinal relaxation rate A for a muon has the following generic
form:

A=(1/T)) = I“J’d:(Bx(r)B* + B.(0B,) (2.2)

where the {B,(¢)B,(0)) are the correlation functions for the local fields acting on the
muon spins. The prefactor I' depends on the actual form of the interaction between the
probe and the atomic spins. and it will include hyperfine and dipolar interactions, both
of which are discussed in the appendix. In the proposed uSR experiment the dipolar
interaction dominates, and the appropriate I' is derived. For an ordered magnet, relax-
ation is achieved with Raman processes that are generated by fluctuations in the atomic
spins along the axis of quantization (easy axis). The final comment about (2.2) is that it
1s assumed that there is no net magnetic field acting on the muon, and hence there is no
function in the integrand that oscillates at the Larmor frequency.

Similarly, one definesthe transverse relaxationrate A |, whichreferstoan experiment
in an applied magnetic field B, (along z) where the muon spins precess with a Larmor
frequency w,,

A'J. = (I/TZ) = (“Nggl/ﬁ)z j dr [(Bz(I)Bz> + % COS(ICUM)<Bx(F)BX + B\.([)Btﬂ (23)

Here, T»isthe transverse relaxation time, which is defined by the macroscopic equations
dM,/dt = M, /T, (a = x, y). A magnetization M,(0) initially oriented along the x axis is
then precessing around the z axis with angular frequency w,,, losing its magnitude at the
rate expf —1/ T,) because of spin flips induced by the fluctuating fields B,(¢).

In usr, an initial polarization of the muon spins is obtained automatically by the
mechanism with which the muons are created. This polarization is along the direction
of the beam coming from the accelerator. Thus, there is no need for a magnetic field to
produce the initial polarization, as in NMR.

Inalongitudinal set-up for usr, detectors for measuring the depolarization are placed
in backward and forward directions with respect to the sample where the muons are
stopped, and the reference direction z is the direction of the muon beam. The relaxation
rate A can be measured in zero field or in a longitudinal field applied along the z axis.

In a transverse field usr experiment, the magnetic field is applied perpendicular to
the initial polarization direction (beam axis). The quantization axis is now along the
applied field By and detectors placed in the xy plane measure the precession (and decay)
of the initial polarization. Equation (2.3) refers to this geometry, which is the same as
in an NMR experiment measuring the so-called free induction decay (Slichter 1990).
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2.1, Longitudinal and transverse spin fluctuations

In the following we will concentrate on the interpretation of ¢SR experiments made in
the longitudinal geometry, mainly because they allow observations in zero applied field.
As observed by inspection of equation (2.2) the measurement of A actually provides
information on the local field fluctuations perpendicular to the chosen symmetry axis of
this measuring geometry.

Spin dynamics of an ordered magnetic system is naturally described with an easy
magnetization axis as reference direction. Longitudinal fluctuations of the atomic spins
refer to this axis, whereas transverse fluctuations are perpendicular toit. In the following
we will illustrate, for a particular magnetic crystal, how the longitudinal spin fluctuations
are seen in a longitudinal uSR experiment for various orientations of a single-crystal
sample with respect to the initial muon spin polarization axis (=beam axis).

It should be noted that conventional experiments in NMR and polarized neutron
scattering need an external field for the observation of the relaxation phenomena (this
is not true for spin-echo NMR, but such observations are less interesting in this context
since the response of an echo experiment mainly comes from domain walls, which are
magnetically perturbed regions). The muon spin relaxation technique, on the other
hand. can be applied even in zero external field. This is of particular importance when
studying dipolar effects on the spin dynamics since even a very weak external field
may interfere with and overshadow the dipolar effects. This is, of course, even more
important if the sample is not a single crystal so that there is a distribution of the ordering
directions with respect to the easy axes over the different domains, or if the sample is
not shaped so that local demagnetization effects are avoided when the field is applied.

As an illustrative example we will choose the magnetic erystal EuQ, which is ferro-
magnetic below 69 K. The position of the 1™ in the crystal lattice has to be known for an
evaluation of the spin Auctuation rates of the surrounding ions. Being positively charped
the 4™ has its lowest potential energy in an interstitial site of the unit cell, The actual
crystallographic position can usually be identified by measuring the local static field
created by the surrounding dipoles in the ordered state if an additional external field is
applied along certain main axes of a single-crystal sample.

We will assume (no experiment has been carried out so far) that the ¢~ occupics the
centre of the unit cell surrounded by four Eu?* jons at the cube corners as illustrated in
figure 1. For a completely ordered Eu”* spin system a dipole sum carried out over the
whole lattice would produce a zero magnetic dipole field at the muon position because
of the high symmetry. A non-zero local field at the u* can still exist through the action
of the spin density of electrons at the same position, which produces a contact field along
the magnetization direction,

B = —3upnln  (r} — n ()] (2.4)

where n| (r) and 2, (r) are the interstitial electron densities for spin up and spin down,
respectively (in the absence of the muon), and # is a spin-density enhancement factor
caused by the muonic charge itself. We anticipate that B, is small in an insulator unless
a muonium-like {muon-electron bound) state is formed.

Below the transition temperature in zero applied field, the Eu spins are lined up
along an easy magnetization axis z with an average value determined by the spontaneous
magnetization curve. No orbital contribution needs to be considered for Eu**, which is
well represented by a S ionic term. Tt is important to observe that, even if the time
average of the dipolar field produced by the surrounding dipoles may be zero due to the
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Figure 1. The notation for the atomic and muon spin orientations relative to the crystal axes
is illustrated for EuO, together with the expected geometry of the implanted muon.

symmetry, the instantaneous local fields are not, unless the sample is at zero temperature
and the dipolar interaction between atomic moments is neglected.

Now consider the geometrical arrangement of figure 1. The easy magnetization
directions of the Eucrystalare (1, 1, 1), which happen to coincide with the atomic vectors
if the p* sits in the assumed position. Of course, only one of the directions (1, 1, 1) is
the true preferential direction in each domain in the spontaneously ordered state. Let
us put the quantization axis along this direction and express the sum of the dipolar fields
from the four Eu dipoles,

B = (gup/d*) E {S(1y — 3/ SO (2.5)

in which d is the distance between the muon and atomic spins in the first coordination
shell.

When each Eu spin component is allowed to fluctuate, it produces a field fluctuation
(B(t)B(0)), which can be expressed in terms of the Eu spin correlation functions
(S(£)S(0)). These local field fluctuations in turn give rise to the relaxation of the muon
spin according to equation (2.2). Recall that the direction of the initial polarization of
the muon spin system can be chosen at will simply by placing the single-crystal sample
at the desired angle with respect to the beam of incoming muons. Details of the geometric
factors in I are provided in the appendix. In the calculation described there, the muon
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Table 1. Values of spin-wave stiffness D and wavevector £*.

Fe Ni EuO EuS

D(meVAY) 240 400 .65 2.5

LAY 0.02 0.01 0.1t 0.18

¢ After Keffer (1966) and Passell er af (1976).

is assumed to be equidistant from the atomic moments, but the method used lends itself
to calculations for a lower spatial symmetry.

3. Ferromagnetic spin-wave theory

Spin operators {8, } of magnitude § are assigned to sites defined by vectors {{} on a Bravais
crystal lattice with N unit cells. A ferromagnetic state is achieved, at temperatures
T < T,, by an isotropic exchange interaction. The spatial Fourier transform of the
exchange interactions is denoted by J(k}, and J(k) = J(—k) because thelattice is Bravais.
The exchange and magnetic field interactions lead to a spin-wave dispersion,

£, = h + 28[J(0) — J(k)] = k + Dk? ak < 1. (3.1)

Here, the Zeeman energy h = gupH . where g is the electronic gyromagnetic factor and
H is the external field strength, and the second equality, valid for long wavelengths,
defines the spin-wave stiffness D. Values of D for EuO, EuS, Fe and Ni are recorded in
table 1.

With the addition of dipolar forces the spin-wave dispersion w, satisfies {Lovesey
1987)

W} = AL = B (¢2)
in which
Ay=g + B =A_, = A} (3.3)
and
B,=B_, #+ B} (3.4)

is the Fourier transform of part of the dipolar force field. For all but the extreme value
k = 0, it has been shown that (Keffer 1966, Passell et af 1976)

B, = D&? sin? 6; exp(—2ig,) (3.5)

where 8, and ¢, are the angles in polar coordinates for & relative to the easy (z) axis.
The strength of the dipolar force is expressed by the wavevector £, listed in table 1,
defined through

D? = 2mgugM, (3.6)

in which M is the saturation magnetization.
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Fluctuations in §°, in linear spin-wave theory, are created by the operator product
§~8%, where 5* are spin raising and Jowering operators, and

ASL = (—1/25N) 2, Si4 .St (3.7)

It is usual to express S; in terms of Bose operators g, and af , which reduce the
Hamiltonian to a quadratic form,

St = uay + valt,. (3.8)
The coefficients in (3.8) are taken to be

ut = (28N) (A, + w) /2w, (3.9)
and

vy = —upBE (A, + @) (3.10)
but this prescription is rot unique. Finally, we need to note

a(7) = a,(0) exp(—ite,) (3.11)

which follows because the Hamiltonian in terms of & and ¥ has the harmonic oscillator
form.

4. Muon relaxation rate

Relaxation processes that involve single spin-wave events, often called direct processes,
are neglected in our calculation of the muon damping rate A. The justification for this
stems in part from the fact that they contribute only when the muon Larmor frequency
w, matches the energy of a spin wave. Hence, there are no direct processes in A if w,, is
less than the minimum spin-wave energy. In practice, w,, is likely to be very smail on the
scale of electronic spin-wave energies, since to begin with @, = 0.57 yeV T~!. The field
experienced by a muon implanied in a magnetic material is essentially the sum of the
dipolar and hyperfine fields generated by electroric magnetic moments, and the external
field, corrected by demagnetizing effects. Using the Lorentz technique, the dipolar field
can be calculated for a given magnetic configuration (Kaplan er al 1973). It vanishes for
some geometries, €.g. an interstitial site in a FCC magnet (Ni, EuO), while severe
cancellation effects and muon diffusion contribute to the reduction of the dipolar field
in most other cases. Finally, direct processes are very weak except at low temperatures.
In consequence, the lowest-order relaxation process is assumed to come from two-spin-
wave events, or Raman processes, generated by fluctuations in 52,

There is a conceptual advantage in expressing A in terms of the longitudinal spin
response function S{(k, ®) mentioned in the introduction, and directly related to the
cross section for magnetic neutron scattering. Expressions for the dipolar and hyperfine
contributions to A are derived in the appendix in what amounts to a straightforward
application of Fermi’s golden rule for transition rates (Moriya 1956, Van Kranendonk
and Bloom 1956).



2050 S W Lovesey et al

With the definition (£, I' run over all N magnetic cells in the sample)

(k. “”“Kr% [ e g TS ST, 0) 1)
we obtain from (A10) and (A17)

2= (2“”‘) S Sk, 0)[1 - cos(k - 8)] (4.2)
and

Ay = (”r ) )2 Sk, 0)[1 + 3 cos(k - 8)]. (4.3)

These two expressions apply to an FCC material in which the muon is assumed to occupy
an interstitial site, e.g. EuQ for which § = (#/2)(1. 1, 0). The coupling constants have
the dimension of (time)~2, and for EuO I = 0.055 x 10® ys~? and while T'y = 8(A/A)*
is not known for this magnetic salt, it is expected that I" = Ty,

Equations (4.2} and {4.3) are properly viewed asrelations betweenbulk (A = 4, + A;)
and differential {S(k, w)}} response functions. From this point of view, A is the ratioof a
transport coefficient, which describes the coupling mechanism, and magnetic specific
heat. Far away from the critical region, the temperature dependence of A comes from
the specific heat. By and large, bulk response functions provide a very limited amount
of information. However, as in the case with usgr, they may provide information that is
not obtainable directly by other experimental techniques.

The spin-wave approximation for S(k, @) contains two spin-wave annihilation and
creation events. induced by dipolar forces, and difference events (Lovesey and Trohidou
1991). For w = 0 only the latter survive because they can conserve the total energy,
whereas simultaneous annihilation, or creation, of two spin waves does not. A compact
expression for A is obtained with the aid of a structure factor (Lovesey and Trohidou
1991},

F(k, q) = {AkAq + Okaq + IBkl |Bql COS[Z(CPJ: - %)]}/zwk% (44)

Observe that F= 0, and F— 1 in the absence of dipolar forces.
From the result (3.75) in Lovesey and Trohidou (1991}, we obtain the results,

by = (%) D a1 + n)Flk. )8(e, — w){l — cos[ - (k — g)]} (4.5)
kg

and

Ap = (3N2) Zﬂ A3+ 1) F(K, g)8(wy, ~ w){1 + 3 cos[ - (k — g)]} (4.6)

where n, is the standard Bose occupation factor (kg = 1},
= [exp(wq/T) - 1]_1' (4.7)

The geometric factors in these expressions play an important role in determining the
properties of the relaxation rates. For simple ferromagnetic spin waves A, is not defined
because the integration in (4.6) is divergent. This behaviour stems from properties of
the integrand at the centre of the Brillouin zone. Finite results are obtained with the
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z2.0F
=
=
10F
Figure 2. The integral K(T) in equation (4.9} for the
0 0'5 1f0 dipolar relaxation rate is displayed as a function of

/7, T/T,. Parametersemployed are appropriate for EuQ.

inclusion of either a magnetic field or dipolar forces between atoms, as shown later,
Since dipolar forces exist in all magnetic materials to some degree, these, or some other
anisotropic interaction, are always responsible for the value of 4,,. In view of the fact
that the integral in (4.6) is sensitive to behaviour of the integrand near the zero centre,
it is at once evident on looking at (4.5) that A4 can have quite different properties.
Indeed, as we now show, it has a finite value for simple ferromagnetic spin waves, i.e.
anisotropic interactions do not play a crucial role.

4.1. Dipolar mechanism

We will evaluate the integral in (4.5) using simple ferromagnetic spin waves, and then
it is appropriate to set F(k, g) = 1. From the material gathered in section 3 we abtain
from (4.5) the expression

Ay = (%) J: g* dgn,(1+ nq)[l - (%)2] (4.8)

in which vy = a*/4 (FCC) is the unit-cell volume, the Bose factors are evaluated with (4.7)
and w, = Dg?, and 6 = a*/2. In the limit of low temperatures the integral in (4.8)
approaches the value

(8272 T3/18D%).

When seeking the general dependence on temperature it is convenient to write (4.8) in
the form that factors out the trivial 72 dependence generated by the quasi-classical
approximation for the Bose occupation factors,

g = 3.91 x 10-3(us) " \(T/T.)*K(T). (4.9)

The coefficient in (4.9) applies to EuO (a = 5.14 A and T, = 69.5 K), assuming that the
muon is at an interstitial site; and the integral K(T') is displayed in figure 2 and it initially
increases linearly with temperature,

Qur estimate of Ay for EuO at T=T,/21is

hg = 0.002 (us) .

At higher temperatures the actual spin-wave stiffness departs significantly from the



2052 S W Lovesey et al

value quoted in table 1 and used in obtaining this estimate. From Passell et af (1976) we
obtain

D(TY/D(0) = 0.64 T=0.8T..

The reduction of D(T) with temperature, due to non-linear spin-wave events, has a
significant effect on our estimates, largely because the coefficient in (4.9) is proportional
to (1/D)*. For example, using the value D(0) and T = 0.8T, gives

2g = 0.006 (us) "'

whereas with the value of D determined by experiment (K = 2.71 is 18% larger than for
D(0)),
Aq = 0.026 (us) "1

which is well within the range of values that can be measured. Application of a magnetic
field will depress A4.

The use of D(T) in our formulae is not strictly a consistent method of accounting for
non-linear spin-wave events. A theory of S(k, w) that accounts for these events reveals
not only the well known renormalization of D(T) but also an interaction that generates
an integral equation for the response function. This implies that the relaxation of usR
signals has the potential to probe non-linear spin-wave events beyond what is presently
established.

We conclude by remarking that spin waves with a dispersion w, = & + Dk? lead to
an S(k, @) that is identical to the density autocorrelation response of an ideal Bose fluid
in which the chemical potential is —#. The expression to be used in (4.2} is

S(k,0) = (Tv, /16x* D2 k) {exp[(4h + Dk?)/4T] —-1}1

and the result for A4 with & == 0 can be shown to be the same as (4.8).

4.2. Hyperfine mechanism

When the energy-conserving delta function in (4.6) demands k = g, which is the case for
small wavevectors, the expression reduces to

4zl
= (55) St + ). o 2(a) (4.10)

in which Z(w) is the spin-wave density of states,
Z(w) = 2 8w — ) = (2w/N) E 3(w? — w}). (4.11)

In the absence of dipolar forces Fig, ¢) = 1, and (4.10) diverges because when g —» 0,
Z{w,) ~ . the product of Bose factors ~ (1/¢* and the density of g-states ~¢, i.e. the
integral diverges logarithmically, cf (4.15).

The second form for Z{w) is useful in view of the nature of the expression for the
spin-wave dispersion (3.2). From (4.4},

Flg.q)=A /0w =1+ |B,|*/wl. (4.12)

In order to gain an orientation for the behaviour of A, as a function of temperature,
magnetic field and dipolar forces, it is reasonable to start by evaluating the density of



Muon spin relaxation in ferromagnets: I 2053

states with the long-wavelength approximation for the exchange contribution to w,.
Replacing in (4.11) the sum over k in a Brillouin zone by an integration over all k, the
density of states is '

one ) [zt h/2DE7)2 (4.13)

) = (mﬁx/z D)) TlE-HE - A"
where the integration limits are |

= 41+ (@/ DLV
and

=1 +(0/20?D) = i1 + (0/DE)]?
with

w? = h* + 282 Dh

and it is zero otherwise. An expression for Z{(w) in terms of an elliptic integral of the
third kind has not proved useful; its structure as a function of « is illustrated in figure 3.
Let us now evaluate A, from (4.10) and (4.13) for some special cases.

4.2.1. Non-dipolar magnet. On taking { = (0in (4.13),

Z(w) = {O w<h (4.14)
{(vo/472D¥?} (w0 — B)'? w=h,

Using this in (4.10), together with F(gq, ¢) = 1, leads to
Ay =T f do n(@)[1 + n(@))Z(@) = (Coud T2A/12° DY) In(l — e Tyl (4.15)
0

in which a(w) is the function (4.7) with w, = w. Thus in the limit of small magnetic
fields A diverges logarithmically, and for a fixed field it has a pronounced temperature
dependence. As should be expected, the dependence of A on T and k s the same as in
1/T calculated for NMR experiments performed on insulating ferromagnets (Mitchell
1957).

4.2.2, Zero field. Taking h = 0in (4.13) leads to (@ = 0)

Z(w) = (V2 Evgx/dm* D) In[(1 + 2x2 + 2x)/(1 + 4x?)'72] (4.16)
in which the dimensioniess variable

x = (w/28*D).

The expression for A, that results from using (4.16) and # = 0 in (4.6) is finite, and not
expressible in asimple closed form. It can be shownthat, in the limit of high temperatures,
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Figure 3. The quantity displayed is Z(w), equation  Figure 4. The integral F(f) defined through (4.18})
(4.13). in units of v,/47*V2 D¢, and w and k are  and {4.19)is illustrated in the form Lo F{ f) as a func-
expressed in units of 257D, The density of states is  tion of f.

zero for0 = o < wy = (h + AN'?. Atw,itachievesa

finite value, proportional to /™ for k < 1. and then

increases with w as (@ — w,)". Results are displayed

forkh=0.1and 0.5,

A o T2, and the proportionality constant is independent of 5. For the opposite limiting
case,

An = (ToE@) 03T 21/64NV2 232 DT E) h=0,T<T, (4.17)

where {(n) is the Riemann zeta function of order s. For intermediate temperatures 2
has been obtained by numerical integration,
The complete formula for the relaxation rate (h = 0) is

Ay = (Tovgh?V2/372) j dx Z(En(e)[1 + n(e)][(x? + }sin26)/e]? (4.18)

where the three-dimensional vector x is dimensionless,
£=(x* + x?sin?6)}?

and
n(e) = {exp(2&*De/T) —-1]71.

Notice that all parameters in the integral appear together as a single factor in the thermal
distribution function.

Before proceeding to adiscussion of numerical results derived from (4.8), we mention
a pitfall in making a seemingly good approximation that brings (4.8) to the same
appealing form as (4.15), in which 2 is just a simple integral over Z2. For £ # 0 we are
prevented from obtaining such a resuit by the factor sin? 8 in the integrand, which arises
from A, in F{q. ¢). It is then tempting to replace this angular factor by its spherical
average. If this is done, & is an integral over 22, given in (4.16), but the integral is
divergent owing to the small-w behaviour of the integrand.
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It is convenient to express the result (4.18) in the form
An= QT3 A3TDYF(f) - (4.19)
where the dimensionless variable ' |
f=Q@2*D/T).

The dependence of the integral F(f) on fis illustrated in figure 4. For small values of f
it increases like (1/f)?, which renders A independent of ¢ and proportional to 72; we
find for f < 0.10 that to an excellent approximation

F(f) = 0.862/f*

which leads to
= (Tou3AT?/D?) X 4.63 x 1072, (4.20)
In the other extreme, F(f) decays like (1/f)¥?, and the result
F(f)=(1.36/f*%)  f—=

for f = 10 agrees with the numerical value to within 2%. In view of the strong variation
of F(f) we have chosen in figure 4 to display In F{f) as a function of f.

We close this subsection with the observation that a fair estimate of A, for the case
when dipolar forces and an external field are important can be obtained from (4.15).
Away from extremely low temperatures it is reasonable to estimate the spin-wave
dispersion relation by

w, = DK + h + 3(27Mygpz). ' (4.21)

The last term in this expression, obtained by averaging the dipolar contribution in (3.2)
over the directions of & (Keffer 1966), is just an addition to the Zeeman energy in (4.15).
Part of the justification behind such an approximate handling of the dipolar contribution
to A, is that we have proved, in this subsection, that dipolar forces on their own lead to
a finite relaxation rate, i.e. they do control the potential divergence of the integral in
(4.6). Yet more reassurance comes from the fact that, at high temperatures, A, does not
explicitly depend on the strength of the dipolar force between the magneticions. Indeed,
the estimates (4.15) and (4.20) are quite similar. For EuC the dipolar contribution to
the spin-wave dispersion (4.21) is only 6% of T..

The result provided in (4.15) is based on a density of states (4.14) derived using the
long-wavelength approximation for the spin-wave energy, namely

22

i _ (0T Ny emhiry-
L dw n(w)[1 +n(w)].?2(w)— (D3(2JI)4) In(1 —e #7)"1, (4.22)

To gauge the influence of the approximation to the density of states the integral has been
evaluated with the full density of states for EuO. In this exercise, dipolar forces wete
not explicitly included but the field was chosen to have the vaiue

h = ¥2xMogps) = 0.093 meV.

The ratio of the result obtained with the full density of states and the right-hand side of
(4.22), evaluated for the same £, is larger than unity for all temperatures, i.e. the
approximate density of states (4.14) provides an underestimate of the integral. The ratio
is 1.83 at T = 0.17,. and saturates beyond 0.57, at an average value of 7.2. Hence, the
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correction is significant at higher temperatures. To account partially for the effect of
spin-wave collisions, which are important at high temperatures (cf section 4.1), the
calculation of the integral was repeated at T = 0.8T, for a field obtained from the
measured magnetization M = 0.67M (Passell era/ 1976) and low-temperature exchange
interactions; there was next to no change in the exact numerical value and the ratio
decreased to the value 6.78. Softening the spin waves is not expected to influence the
ratio very much since the spin-wave stiffness appears as a factor in the approximate
expression provided in (4.22).

5, Conclusions

A muon spin relaxation experiment on an ordered ferromagnet has been proposed
with the aim of improving knowledge of spin fluctuations paralle] to the easy axis of
magnetization. Since many previous experiments have used neutron beam techniques,
the relation between response functions observed in these and ysR experiments has been
carefully established.

Predictions for the dependence of the pSR relaxation rate on temperature, magnetic
field and dipolar interactions have been obtained from spin-wave theory. The latter
should be perfectly reliable at temperatures small compared with the critical tempera-
ture. But there are reasons why it might be accurate over a considerably wider tem-
perature range, which stem from the fact that the relaxation rate is dominated by
longitudinal spin fluctuations (Raman processes) and these involve two-spin-wave
events, i.e. non-linear events. Hence, the evaluation of Raman processes in lowest
order, as reported here, actually takes the level of calculation of the relaxation rate
beyond the domain covered by linear spin-wave theory.

The dipolar and hyperfine mechanisms for relaxation possess different charac-
teristics. A potential divergence of the k integration in the formula for A, is controlled
by the dipolar forces between the magneticions. However, at high temperatures A, does
not explicitly depend on the strength of the dipolar forces. There are no such subtle
features about the dipolar contribution, at least when the muon occupies a site at which
the average value of the dipolar field from the surrounding magnetic ions is zero. This
property introduces in the & integral a function that controls the potential divergence
seen in the corresponding formula for A;. In consequence, A4 has been estimated with
simple ferromagnetic spin waves, and dipolar forces between magnetic ions are not
included. If the ratio of the hyperfine and dipolar coupling constants for the muon is
small, asit is expected to be in EuQ, then the observed relaxation rate will be dominated
by the dipolar contribution A4, i.e. spin dynamics are not strongly revealed in the
hyperfine contribution.

The longitudinal spin fluctuations of interest are created by fluctuations in the dipolar
field experienced by the implanted muon {which is assumed to be a perfectly passive
probe of the ordered magnetic state). Given that the muon is equidistant from each
coordination shell of atomic moments and zero-point motion of the muon is not influ-
ential, our theory should cover all experimental geometries. The theory is presented in
aform that makes a generalization to non-equidistant configurations relatively straight-
forward.

The magnetic salt EuQ is of particular interest, and predictions for usr specific to it
are presented. Many properties of EuO are firmly established, but neutron beam data
on longitudinal fluctuations are not in accord with existing theoretical models. It is well
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suited for usr experiments for several reasons, including the fact that Eu®* is an S-state
ion, and thus quadrupole interactions will not complicate this interpretation of data. It
is shown how the usr signal depends on the orientatior: of the muon beam reiative to
one of the easy axes, but this dependence is completely averaged out in a muiti-domain
sample. A predominance of one domain can possibly be achieved with a magnetic field
of a strength so small that the Larmor frequency of the muon is negligible compared to
electronic frequencies, in which case a properly shaped sample is required to avoid
demagnetizing field in homogeneities.

Experiments on such a sample will permit stringent tests of the influence of spin
fluctuations on the muon spin relaxation in an ordered ferromagnet, and evidence for
fluctuations in the dipolar field at the muon as the principal relaxation mechanism.
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Appendix

Here we provide formulae for the dipolar and hyperfine relaxation rates. It is assumed
that identical magnetic tons are located at positions {/} with respect to the implanted
muon and {{| = 4. The magnetic moment carried by each ion is guaS({). Figure 1
illustrates the configuration of the muon and neighbouring spins in EuO.

The dipolar ficld at the muon is expressed in terms of spherical components of the
spin operators by means of the standard expression

3
B, = (%) s s - d_Z’”'S("H} (g"‘“) (6m)'" 23 5,()Y5 () (1924110
(Al)

In the last equality the spin operator is coupled to a spherical harmonic of rank two by
a Clebsch~Gordon coefficient. We use the phase conventions employed by Edmonds
(1960).

Fluctuations in the dipolar field away from its average value produce a relaxation of
the muon spin signal. For simple magnets it is likely that (B} = 0, and EuQ is one such
material.

The relaxation rate A, is obtained by a straightforward apphcation of Fermi's golden
rule for the perturbation

¥ = g,uxl - B (A2)

where [ is the muon spin operator. The muon Larmor frequency is set equal to zero in
the following calculations, for reasons explained in the text, and the initial and final
muon spin states are labelled by m and ', respectively. From (A2) we obtain

hom2 (B9 [ S (-1)2 gyl g I B (OB - oml '
(A3)
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where the normalization is chosen such that 4, is the same as the conventional definition
o 1I/f1;;;e muon spin axis is defined by polar angles («, B) with respect to the crystal axes,
the single spin-fip matrix elements required in (A3) are

(milylm'y = —}sin a{m|I"|m’)

(mlLoilm’y = (€#/V2) sin’ (a/2)im| 1" |m") (A4)

(ml_\|m’y = (e7#/V/2) cos*(r/2){mlI™ | m")
in which

mI"lm'Y¥ =T+ m+ 1)1 ~m). (AS)
In fact, it is unlikely that the sample will be a single domain, or even possess a pre-

dominant domain. Hence, for most cases of interest it is appropriate to average (A3)
over the orientations of the muon spin. Using the result (A4) we obtain

2 =
ha=4 () [ arS (-02Bo08-0) (46)
-x  Q
in which it remains to isolate the spin components that affect relaxation.
For reasons given in the text, we select Raman processes that are described by the
iongitudinal spin correlation function (§°(¢)§7), i.e. fluctuations along the easy axis. On
inserting in (A6) the expression (Al) for By, and introducing the definition

I'= %(gg,uMBHN/ﬁds)a (A7)
we are led to the result
_JT_F : 2 2 2(1 z 4
n=(3) [ @S- WMOMOKSLISE.0)  (AB)
e eé

inwhich @ =0, 1.

Up to this point no mention of the configuration of the atomic spins has entered the
discussion, other than that they are identical and equidistant from the muon. We
continue for the special case when the average dipolar field at the muonis zero, achieved
for a configuration {f} that satisfies the condition

; Yi(h) = 0. (A9)

We further assume that, as in the case of EuO, there are just two distinct spin correlation
functions, namely the site-diagonal and nearest-neighbour functions. In this case (A8)
reduces to

A = (H_r) j " de(S%(m, % (m, 0) — S*(m + 8.5(m, 0) Z. (4 - Q)Y
10/)__ Lo
(A10)

For the configuration of spins illustrated in figure 1, which is believed to be appropriate
for EuO, we find
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2 V3O = (5/3m) | (Al1)
; _ :

and

2|YIO) = (5/97).

!

We conclude this discussion of the dipolar relaxation mechanism by providing the
value of the coupling constant when the muon spin has a definite orientation specified
by (&, ) with respect to the crystal axes, and the easy axis (z axis) is along the EuO
crystal (11 1) direction:

I’ = ([/4)[3 + cos?a + 2 sin®a cos(s/4 — B) — V2sin(2a) cos(w/4 + £)].  (A12)

Upon averaging I’ over the polar angles (o, 8), I'' =T as expected. Note that if the
muon and electronic spins are parallel, I'" = 3.5T".

For the discussion of the hyperfine relaxation mechanism, let the easy axis (z axis)
be defined by polar angles (8, ¢) with respect to the crystal axes. The perturbation is
then of the form

%K= Ad-S() =42 A,5:(1)I" [sin 8, cos g ,(cos a cos B ~ isin §)
i i

4 sin 8, sin ¢, (cos asin § + i cos ) — cos G, sin al (A13)

where the second equality is achieved by selecting the longitudinal spin components. In
calculating the relaxation rate A, we begin by retaining just the site-diagonal spin
correlation functions, and this gives

I“J ko
Ay = (1—;) f de (S (m, S*(m, 0)) (Al4)
where
[y = (NyTy/16){1 — [cos @ cos & + sin @ sin & cos(g — $)]*} (A15)
in which N, is the number of magnetic ions and

Iy = 8(A/R). (A16)

Note that I'j vanishes for a collinear arrangement of the atomic and muon spins. For a
multi-domain EuO sample (N, = 4)

Ty = $(A/R).

It is relatively easy for this special case to calculate the contribution to A, made by the
next-nearest-neighbour spin correlation functions. The result

1“ o
Ay = (76-9) f dt (5%(m, 8 (m, 0) + 35 (m + 8, NS (m, 00  (A17)
corresponds to (A10) for the dipolar mechanism.
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