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Abstract. Expressions for the dipolar and hyperfine contributions 10 the relaxation rate 01 
muons implanted in a ferromagnet are presented. and analysed using the Heisenberg model 
of spin waves including dipolar and Zeeman energies. Calculations for EuO indicate that 
the temperature dependence of the hyperfine and dipolar contributions lo the relaxation 
rate are Similar. so the latter contribution will dominate if the ratio of the hyperfine and 
dipolarcouplingconstants is indeed verysmall. The hyperfine mechanism issensitive to the 
dipolar energy of the alomic spins. whereas the dipolar mechanism depends essentially on 
the exchange energy, For both mechanisms there is an almost quadratic dependence on 
temperature. throughout much ofthe ordered magnetic phase, which reflects two-spin-wave 
difference events from the Raman-type relaxation processes. 

1. Introduction 

Recent neutron scattering experiment son ordered ferromagnets have rekindled interest 
in the static and dynamic properties of longitudinat spin fluctuations, i.e. components 
parallel to the easy axis. In the experiments, these are cleanly separated from transverse 
fluctuations by the use of polarization analysis. Data for insulating and metallic ferro- 
magnets, just below the critical temperature (T,), collected for small wavevectors 
(k  - 0.1 .&-I) reveal a quasi-elastic response and no inelastic scattering at the spin- 
wave energy, even though spin-wave resonances are clearly defined in the transverse 
fluctuations (Mitchell et al 1984. Mitchell et al unpublished, Boni et al 1991). These 
findings contrast with conclusions drawn from earlier unpolarized neutron scattering 
dataon Fe, Niand EuO, namely that, unlike antiferromagnets, the longitudinal response 
S(k ,  CO) is predominantly inelastic, i.e. a minimum at w = 0. 

The dependence of the longitudinal spin response on the magnitude of an external 
field (required in the experiments to produce a unique easy axis and to prevent severe 
depolarization) is of interest in view of well established results for the longitudinal 
susceptibility ~ ( k ) ,  related to the integral of S(k, w)/w.  to the effect that it diverges 
in the limit of a vanishing field or wavevector. Spin-wave theory of a Heisenberg 
ferromagnet, for example, predicts ~ ( 0 )  a E''* when the field h+ 0. and ~ ( k )  k-'  
for h = 0 and k+ 0. Boni et a[ (1990) find for Ni at T = 0.987Tc that the longitudinal 
intensity decreases moderately on increasing the field by a factor of 3. Nor have previous 
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experiments unambiguously detecteddivergent behaviour inX(k). Kotzler and Muschke 
(1986) report an indication of ~ ( 0 )  5~ h-'" behaviour in an analysisof bulk data for EuS. 
Neutron diffraction experiments on EuO (Passell et a/  1976) and a disordered alloy 
palladium/lO% iron (Mitchell et a/  1984) also reveal non-divergent behaviour of the 
susceptibility. The expression for S(k ,  w )  derived from spin-wave theory (Lovesey 
and Trohidou 1991) possesses a field-limited enhancement at the spin-wave dispersion 
frequency, and appears to be at oddswith the recent polarized neutron scattering data 
just described. Moreover, it can be shown that dipolar forces do not annul the ( I l k )  
behaviour of X(k) for small k ,  but ~ ( 0 )  is finite and depends on the shape of the sample. 

AlthoughVaksetal(l968) argue thatspin-waveresultsforX(/i)andS(k, w)evaluated 
for small k and w should be useful over a wide range of temperatures, perhaps these 
estimates are not reliable quite so close to T, as in the existing neutron scattering 
experiments. I t  would be valuable to havedataat lower temperatures, where spin-wave 
theory can be applied with confidence, and to  identify the temperature at which the 
theory becomes inadequate. 

To thisend. the techniqueofmuonspin relaxation (!SRI hassome attractive features 
(Cox 1987). The relaxation of the muon signal is directly related to S(k, w )  and experi- 
ments can be performed with zero or a very small Larmor precession frequency, wp < 
1 peV. Here we present resultsfor therelaxation rate A. calculated with spin-wave theory 
applied toa Heisenbergferromagnet. The model includesdipolar forcesandan external 
magnetic field. 

The properties of muons implanted in an ordered ferromagnetic are reviewed in the 
next section, with a view to an experiment on EuO. Ferromagneticspin-wave theory is 
sketched in section 3, and the presentation largely follows Keffer (1966) and Lovesey 
(1987). The muon relaxation rate is calculated in section 4. It is argued that the muon 
Larmor frequency can be set to zero in the theory, to a good approximation. In view of 
this, the relaxation rate is determined by so-called Raman spin-wave scattering events, 
and A. CE 2 S ( k ,  0). An expression for A is derived using linear spin-wave theory, and its 
behaviour as functions of the dipolar forces, magnetic field and temperature is estab- 
lished using analytical and numerical techniques. Conclusions are gathered in section 5. 

S W Looesey et a/  

2. Muon spin relaxation experiments 

The majority ofinformation onspin fluctuations in magneticmaterials has been obtained 
by neutron beam experiments, which allow spatial as well as temporal characteristics of 
the Huctuations to  be determined. Although even very subtle effects, such as the influ- 
ence if dipolar interactions between the spins in the presence of much stronger exchange 
interactions, can be observed in neutron scattering, the information obtained is not 
always unambiguous. and additional information from other spectroscopies can be 
helpful. Here it is argued that spin relaxation experiments using positive muons as 
magnetic probes can provide complementary information. in particular on the effects 
on the longitudinal spin fluctuations in a magnetic material. 

Muon spin relaxation ( ~ s R )  experiments have so far b e n  carried out on a number 
of magneticniaterials, notably metallicmagnets (for a revicwsee,forinstance, Karlsson 
(1990)) but also for a limited number of insulating materials (Holzschuh et a/ 1981, 
Brewer eta[ 1981). The Huctuationsof the atomicspins in the material are often obtained 
indirectly through their magnetic coupling with a probe spin, in the present case that of 
the p +  whereas in  nuclear magnetic resonance (NMR) a ligand nuclcus might be 
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monitored. In the analysis of pSR data it is assumed that the implanted muon is a passive 
probe, and the signal is truly representative of bulk properties in the absence of the 
probe, i.e. ~ S R  is regarded as a delicate and unobtrusive technique. 

The relaxation of the muon spin is described by the same rate equations as in the 
theory of NMR (Slichter 1990). The longitudinal relaxation time T, is defined through 
the exponential decay on an initial magnetization of the probe spin M,(O) directed along 
thex axis, 

M:(f) = M , ( O )  exp(-[IT,). (2.1) 

The microscopic mechanism behind this polarization decay is that fluctuation fields B,(r) 
and E,,([), perpendicular to the z direction, are actingon the probe spin and induce spin- 
flip transitions. The longitudinal relaxation rate A for a muon has the following generic 
form: 

A (l /T1) = r ]  d((B,&)B, + B,(rP,,? (2.2) 

where the (B,(t)B,(O)) are the correlation functions for the local fields acting on the 
muon spins. The prefactor r depends on the actual form of the interaction between the 
probe and the atomic spins, and i t  will include hyperfine and dipolar interactions, both 
of which are discussed in the appendix. In the proposed ~ S R  experiment the dipolar 
interaction dominates, and the appropriate r is derived. For an ordered magnet, relax- 
ation is achieved with Raman processes that are generated by fluctuations in the atomic 
spins along the axis of quantization (easy axis). The final somment about (2.2) is that i t  
is assumed that there is no net magnetic field acting on the muon, and hence there is no 
function in the integrand that oscillates at the Larmor frequency. 

Similarly, one defines the transverse relaxation rate A,, which refers to an experiment 
in an applied magnetic field E,, (along z )  where the muoii spins precess with a Larmor 
frequency m,,. 

Here, T2 is the transverse relaxation time, which is defined by the macroscopicequations 
dM,/dt = M,/T2 (a = x, y ) .  A magnetization M,(0) initially oriented along thex axis is 
then precessing around the z axis with angular frequency cui,, losing its magnitude at the 
rate exp(-r/T2) because of spin flips induced by the fluctuating fields E,([). 

I n  ~ S R ,  an initial polarization of the muon spins is obtained automatically by the 
mechanism with which the muons are created. This polarization is along the direction 
of the beam coming froin the accelerator. Thus, there is no need for a magnetic field to 
produce the initial polarization, as in NMR. 

In a lorigititdinalset-upforpsR, detectorsformeasuringthe depolarization are placed 
in backward and forward directions with respect to the sample where the muons are 
stopped, and the reference direction z is the direction of the muon beam. The relaxation 
rate A can be measured in zero field or in a longitudinal field applied along the z axis. 

In a fransueise field ~ S R  experiment, the magnetic field is applied perpendicular to 
the initial polarization direction (beam axis). The quantization axis is now along the 
applied field B,and detectors placed in the xy plane measure the precession (and decay) 
of the initial polarization. Equation (2.3) refers to this geometry, which is the same as 
in an N M R  experiment measuring the so-called free induction decay (Slichter 1990). 
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2.1. Lorigitudinal and fratisverse spin fluctuations 

In the following we will concentrate on the interpretation of p S R  experiments made in 
the longitudinalgeometry, mainly because they allow observations inzero appliedfield. 
As observed by inspection of equation (2.2) the measurement of E. actually provides 
information on the local field fluctuations perpendicular to the chosen symmetry axisof 
this measuring geometry. 

Spin dynamics of an ordered magnetic system is naturally described with an easy 
magnetization axis as reference direction. Longirirdi/ialpuctuarions of the atomic spins 
refer to this axis, whereas transverse fluctuations are perpendicular to it. In the following 
we will illustrate, for aparticular magneticcrystal, how the longitudinal spin fluctuations 
are seen in a longitudinal ~ S R  experiment for various orientations of a single-crystal 
sample with respect to the initial muon spin polarization axis (=beam axis). 

I t  should be noted that conventional experiments in NMR and polarized neutron 
scattering need an external field for the observation of the relaxation phenomena (this 
is not true for spin-echo NMR. but such observations are less interesting in this context 
since the response of an echo experiment mainly comes from domain walls, which are 
magnetically perturbed regions). The muon spin relaxation technique. on the other 
hand. can be applied even in zero external field. This is of particular importance when 
studying dipolar effects on the spin dynamics since even a very weak external field 
may interfere with and overshadow the dipolar effects. This is, of course, even more 
important ifthe sample isnot asingle crystal so that thereisadistribution ofthe ordering 
directions with respect to the easy axes over the different domains, or if the sample is 
not shaped so that local demagnetization effects are avoided when the field is applied. 

As an illustrative example we will choose the magnetic crystal EuO, which is ferro- 
magnetic below 69 K. The positionof thep+ in the crystal lattice has to be known for an 
evaluationof the spin fluctuationratesof the surrounding ions. Beingpositivclycharged 
the p* has its lowest potential cnergy in an interstitial site of the uni t  cell. The actual 
crystallographic position can usually be identified by measuring the local static field 
created by the surrounding dipoles in the ordered state if  an additional external field is 
applied along certain main axes of a single-crystal sample. 

We will assume (no experiment has been carriedout so far) that the/c‘occupics the 
centre of the unit cell surrounded by four Eu” ions at the cube corners as illustrated in 
figure 1. For a completely ordered Eu’* spin system a dipole sum carried out over the 
whole lattice would produce a zero magnetic dipole field at the muon position because 
of the high symmetry. .4 non-zero local field at the pt can still exist through the action 
of the spin density of electrons at the same position, which produces acontact field along 
the magnetization direction. 

B, = - flwl[n L (4 - n I Wl (2.4) 

where n I (,r) and 1 7 ,  ( r )  are the interstitial electron densities for spin up and spin down, 
respectively (in the absence of the muon). and 11 is a spin-density enhancement factor 
caused by the muonic charge itself. We anticipate that B, issmall in an insulator unless 
a muonium-like (muon-electron bound) state is formed. 

Below the transition tcniperature in zero applied field, the Eu spins are lined up 
alonganeasy magnetization axisz with anaverage valuedetermined by thespontaneous 
magnetization curve. No orbital contribution needs to be considered tor E u ’ ~ .  which is 
well represented by a xS ionic term. It is important to observe that, even if the timc 
average of the dipolar field produced by the surrounding dipoles may be zero due to the 
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Figure 1. The notation for the atomic and muon spin orientations relative 10 the crystal axes 
is illustrated for EuO. together with the expected geometry of the implanted muon. 

symmetry, theinstantaneous local tieldsarenot, unlessthe sample isatzero temperature 
and the dipolar interaction between atomic moments is neglected. 

Now consider the geometrical arrangement of figure 1. The easy magnetization 
directionsoftheEucrystalare(1, I ,  l ) ,  which happentocoincidewiththeatomicvectors 
if the p +  sits in the assumed position. Of course, only one of the directions (1, 1 ,  1) is 
the true preferential direction in each domain in the spontaneously ordered state. Let 
us put the quantization axis along this direction and express the sum of the dipolar fields 
from the four Eu dipoles, 

B = ( g p d d ' )  z { S ( [ )  - (3 /d  ' ) l [ l .  S(l)l) (2.5) 
i 

in which d is the distance between the muon and atomic spins in the first coordination 
shell. 

When each Eu spin component is allowed to fluctuate, it produces a field fluctuation 
(B(f)B(O)) ,  which can be expressed in terms of the Eu spin correlation functions 
(S ( f )S (O) ) .  These local field fluctuations in turn give rise to the relaxation of the muon 
spin according to  equation (2.2). Recall that the direction of the initial polarization of 
the muon spin system can be chosen at will simply by placing the single-crystal sample 
at thedesiredangle with respect to the beamofincomingmuons. Detailsofthegeometric 
factors in r are provided in the appendix. In the calculation described there, the muon 
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Table 1. Values of spin-wave stiffness D and wavevector 5' 

Fe Ni EuO EuS 

D(meVA') 2x0 400 11.65 2Sh 
~ ~~~ - 

C ( A - 1 )  0.02 0.01 0.11 U.18 

*After  Keffer (1966)and Pessellerd(1976). 

is assumed to be equidistant from the atomicmoments. but the method used lends itself 
to calculations for a lower spatial symmetry. 

3. Ferromagnetic spin-wave theory 

Spin operators{S,}ofmagnitudcSare assigned tositesdefinedbyvectors{l]onaBravais 
crystal lattice with N unit cells. A ferromagnetic state is achieved, at temperatures 
T <  T,, by an isotropic exchange interaction. The spatial Fourier transform of the 
exchangeinteractionsisdenotedbyJ(k),andJ(k) = J ( - k )  because thelatticeisBravais. 
The exchange and magnetic field interactions lead to a spin-wave dispersion. 

ck = I7 + 2S[J(O) - J(k)] = h + Dk? ak Q 1. (3.1) 

Here, the Zeeman energy h = g p B H ,  whereg is the electronic gyromagnetic factor and 
H is the external field strength, and the second equality, valid for long wavelengths, 
defines the spin-wave stiffness D. Values of D for EuO. EuS. Fe and Ni are recorded in 
table 1. 

With the addition of dipolar forces the spin-wave dispersion wp satisfies (Lovesey 
1987) 

= A i  - [Bhl? (3.2) 

in which 

Ak = Q + lBPl = A = A: (3.3) 

B h = B + f B f  (3.4) 

and 

is the Fourier transform of part of the dipolar force field. For all but the extreme value 
k = 0, it has been shown that (Keffer 1966, Passell et a[ 1976) 

Bh = DE2 sin? Ox exp(-2irpk) (3.5) 
where 0, and qk are the angles in polar coordinates fork relative to the easy (2) axis. 
The strength of the dipolar force is expressed by the wavevector c, listed in table l 1  
defined through 

DE2 = 2ngpBM0 (3.6) 

in which M O  is the saturation magnetization. 
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Fluctuations in s'. in linear spin-wave theory, are created by the operator product 
S-S' ,  where S' are spin raising and lowering operators, and 

(3.7) 

It is usual to express S t  in terms of Bose operators a, and a:. which reduce the 
Hamiltonian to a quadratic form, 

s: = Ukak f U&. (3.8) 

The coefficients in (3.8) are taken to be 

U: = (2SN) (A, + w,)/2wk (3.9) 

and 

U X  = -ukBX/(Ak + wk) (3.10) 

but this prescription is not unique. Finally. we need to note 

ak(r) = ak(0) exp(-irw,) (3.11) 

which follows because the Hamiltonian in terms of a and a+ has the harmonic oscillator 
form. 

4. Muon relaxation rate 

Relaxation processes that involve single spin-wave events, often called direct processes. 
are neglected in our calculation of the muon damping rate A. The justification for this 
stems in part from the fact that they contribute only when the muon Larmor frequency 
wp matches the energy of a spin wave. Hence, there are no direct processes in A if wp is 
lessthantheminimumspin-waveenergy. Inpractice, ro,islikelytobeverysmallonthe 
scale of electronic spin-wave energies, since to begin with w p  = 0.57 FeV T-I. The field 
experienced by a muon implanted in a magnetic material is essentially the sum of the 
dipolar and hyperfine fieldsgenerated byelectronicmagncticmoments, and theexternal 
field, corrected by demagnetizing effects. Using the Lorentz technique. the dipolar field 
can be calculated for a given magnetic configuration (Kapian er al1973). It vanishes for 
some geometries, e.g. an interstitial site in a FCC magnet (Ni, EuO), while severe 
cancellation effects and muon diffusion contribute to the reduction of the dipolar field 
in most other cases. Finally, direct processes are very weak except at low temperatures. 
I n  consequence, the lowest-order relaxation process is assumed to come from two-spin- 
wave events, or Raman processes, generated by fluctuations in S'. 

There is a conceptual advantage in expressing A in terms of the longitudinal spin 
response function S(k, w )  mentioned in  the introduction, and directly related to the 
cross section for magnetic neutron scattering. Expressions for the dipolar and hyperfine 
contributions to A are derived in the appendix in what amounts to a straightforward 
application of Fermi's golden rule for transition rates (Moriya 1956, Van Kranendonk 
and Bloom 1956). 
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With the definition ( I ,  I' run over all N magnetic cells in the sample) 

we obtain from (A10) and (A17) 

These two expressions apply to an ~ccmater ia l  in which the muon isassumed to occupy 
an interstitial site, e.g. EuO for which 6 = (u/2)(1.1.0). The coupling constants have 
the dimension of (time)-'. and for EuO r = 0.055 X 10hys-' and while r,, = 8(A/A)' 
is not known for this magnetic salt, it is expected that r 9 r(,. 

Equations (4.2) and (4.3) are properly viewed as relations between bulk (A = Ad + A,) 
and differential (S(k, w ) }  response functions. From this point of view, k is the ratio of a 
transport coefficient, which describes the coupling mechanism. and magnetic specific 
heat. Far away from the critical region, the temperature dependence of J. comes from 
the specific heat. By and large, bulk response functions provide a very limited amount 
of information. However, as in the case with ~ S R ,  they may provide information that is 
not obtainable directly by other experimental techniques. 

The spin-wave approximation for S(k, U )  contains two spin-wave annihilation and 
creation events, induced by dipolar forces. and difference events (Lovesey and Trohidou 
1991). For w = 0 only the latter survive because they can conserve the total energy, 
whereas simultaneous annihilation, or creation, of two spin waves does not. A compact 
expression for A is obtained with the aid of a structure factor (Lovesey and Trohidou 
1991). 

F(k,  4) I A d q  + U.t('Jq + l B k l  IBqI COS[Z(q, - Vq)II/2wkwq. (4.4) 

Observe that F a  0, and F-+ 1 in the absence of dipolar forces. 
From the result (3.7b) in Lovesey and Trohidou (1991), we obtain the results, 

and 

Ah = (+I 2 n,,(l + nq)F(k,  q)6(wk - oJ{1 + 3 COS[&. (k - q)]} 
',Tr 

(4.6) 
,3N k , q  

where tiq is the standard Bose occupation factor (k, = I) ,  

t iq = [exp(wq/T) - 1 ] - I .  (4.7) 
The geometric factors in thcse expressions play an important role in determining the 
propertics of the relaxation rates. For simple ferromagnetic spin waves A h  is not defined 
bccause the integration in (4.6) is divergent. This behaviour stems from properties of 
the integrand at the centre of the Brillouin zone. Finite results are obtained with the 
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1 0  

Fwre 2. The integral K ( T )  in equation (4.9) for the 
dipolar relaxation rate is displayed as a function of .i..K 0 T/T< TITc. ParamefersemployedareappropriateforEuO. 

0.5 

inclusion of either a magnetic field or dipolar forces between atoms, as shown later. 
Since dipolar forces exist in all magnetic materials to some degree, these, or some other 
anisotropic interaction, are always responsible for the value of A,. In view of the fact 
that the integral in (4.6) is sensitive to behaviour of the integrand near the zero centre, 
it is at once evident on looking at (4.5) that Ad can have quite different properties. 
Indeed, as we now show, it has a finite value for simple ferromagnetic spin waves, i.e. 
anisotropic interactions do not play a crucial role. 

4.1. Dipolar mechanism 

We will evaluate the integral in (4.5) using simple ferromagnetic spin waves, and then 
it is appropriate to set F(k. q )  = 1. From the material gathered in section 3 we obtain 
from (4.5) the expression 

(4.8) 

inwhichoo = a3/4(~cc)istheunit-cel1volume, theBoseiactorsareevaluatedwith(4.7) 
and w, = Dq2, and 6’ = a2/2. In the limit of low temperatures the integral in (4.8) 
approaches the value 

(62n2T3/18D3). 

When seeking the general dependence on temperature it is convenient to write (4.8) in 
the form that factors out the trivial T 2  dependence generated by the quasi-classical 
approximation for the Bose occupation factors, 

A, = 3.91 x ~ o - ~ ( ~ ~ ) - I ( T / T ~ ) ~ K ( T ) .  (4.9) 
The coefficient in (4.9) applies to EuO (a = 5.14 8, and Tc = 69.5 K), assuming that the 
muon is at an interstitial site; and the integral K ( T )  is displayed in figure 2 and it initially 
increases linearly uith temperature. 

Our estimate of Ad for EuO at T = T,/2 is 

Ad = 0.002 (ps )  - 1 .  

At higher temperatures the actual spin-wave stiffness departs significantly from the 
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value quoted in table 1 and used in obtaining this estimate. From Passell eral(l976) we 
obtain 

S W Louesey el al 

D(T)/D(O) = 0.64 T =  0.8T,. 

The reduction of D ( T )  with temperature. due to non-linear spin-wave events, has a 
significant effect on our estimates, largely because the coefficient in (4.9) is proportional 
to (l/D)3. For example, using the value D(0) and T = 0.8Tc gives 

Ad = 0.006 (ps)-’ 

whereas with the value of D determined by experiment (K = 2.71 is 18% larger than for 
D(O)), 

Ad = 0.026 (ps)-’ 

which is well within the range of values that can be measured. Application of a magnetic 
field will depress Ad. 

The use of D(T)  in our formulae is not strictly a consistent method of accounting for 
non-linear spin-wave events. A theory of S ( k ,  w )  that accounts for these events reveals 
not only the well known renormalization of D(T) but also an interaction that generates 
an integral equation for the response function. This implies that the relaxation of ~ S R  
signals has the potential to probe non-linear spin-wave events beyond what is presently 
established. 

We conclude by remarking that spin waves with a dispersion wk = h + Dk’ lead to 
an S(k, w )  that is identical to the density autocorrelation response of an ideal Bose fluid 
in which the chemical potential is -h. The expression to be used in (4.2) is 

S(k .0)  = (Tu,/16dD2k){exp[(4h + Dk2) /4T]  - I]-’ 
and the result for Ad with h = 0 can be shown to be the same as (4.8). 

4.2. Hyperfine mechanism 

When the energy-conserving delta function in (4.6) demands k = q. which is the case for 
small wavevectors, the expression reduces to 

(4.10) 

in which Z(w) is the spin-wave density of states, 

1 
(4.11) 

In the absence of dipolar forces F(q, q )  = 1. and (4.10) diverges because when q- 0, 
Z(w,) - q, the product of Bose factors - (]/&and the density of q-states -q2. i.e. the 
integral diverges logarithmically, cf (4.15). 

The second form for Z(w)  is useful in view of the nature of the expression for the 
spin-wave dispersion (3.2). From (4.4). 

(4.12) 

In order to gain an orientation for the behaviour of A, as a function of temperature, 
magnetic field and dipolar forces, it is reasonable to start by evaluating the density of 

Z(w)  = $2 S(w - w1) = (2w/N) z 6(w’ - 0;). 
k k 

F ( q , q )  = A$/wZ, = 1 + IB,12/wZ,. 
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states with the long-wavelength approximation for the exchange contribution to wk. 
Replacing in (4.11) the sum over k in a Brillouin zone by an integration over all k, the 
density of states is 

(4.13) 

where the integration limits are 

t ,  =$[I + ( w / D C ~ ) ~ ] ” ~  

and 

r 2  - - t l  2 + (0/25*D) = b[l + ( w / D ~ * ) ] *  

with 

w2 2 h2 + 2C2Dh 

and it is zero otherwise. An expression for Z(w) in terms of an elliptic integral of the 
third kind has not proved useful; its structure as a function of w is illustrated in figure 3. 
Let us now evaluate Ah from (4.10) and (4.13) for some special cases. 

4.2.1. Non-dipolarmugner. On taking 5 = Oin(4.13). 

0 w < h  

z(w)= ((uo/4K2D3!2)(w - h)l/* o 2 h .  
(4.14) 

Using this in (4.10), together with F(q, q) = 1, leads to 

Ah = r dwn(o)[ l  + n(w)]Z2(w) = ( r&%/12n3D3) ln( l  - e-h’r)-l (4.15) 

in which n(w)  is the function (4.7) with wp = w .  Thus in the limit of small magnetic 
fields A diverges logarithmically, and for a fixed field it has a pronounced temperature 
dependence. As should be expected, the dependence of A on Tand h is the same as in 
l/Tl calculated for NMR experiments performed on insulating ferromagnets (Mitchell 
1957). 

jo= 

4.2.2. Zerofield. Taking h = 0 in (4.13) leads to (w 3 0) 

~ ( w )  = ( V ~ ~ ~ ~ X / ~ Y C ~ D )  In[(l + 2 ~ ’ ’ ~  + z~) / ( I  + ~ x * ) ” ~ I  (4.16) 

in which the dimensionless variable 

x = (w/2C2D). 

The expression for Ah that results from using (4.16) and h = 0 in (4.6) is finite, and not 
expressibleinasimpleclosedform. Itcan beshownthat,inthelimitofhightemperatures, 
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Figure 3. The quantity displayed is Z(o). equation 
(4.13). in units of u,l/4n'\5D2~. and o and h are 
expressed in units of 2C'D. The density of states is 
z e r o f o r O s o G o , , = ( h +  h')'". Ato,,itachievesa 
finite value. proportional to k"* for h 4 I .  and then 
increaseswithwas(w - o,,)li'. Resultsaredisplayed 
for h = 0. I and 0.5. 

4 . 0  $::I(+ - c 1.0 

0 

-1.0 

-2.0 ~~~~ ~~~ 

Figure 4. The integral F(f) defined through ( 4 .  IS) 
and (4.19) is illustrated in the form In F( f )  as a func. 
tion off. 

A, = T', and the proportionality constant is independent of c. For the opposite limiting 
case, 

A,, = (To5(~)vaTs/zh/64v5'3,~D7r-5) h = 0, T <  T, (4.17) 

where 5(n)  is the Riemann zeta function of order n. For intermediate temperatures A 
has been obtained by numerical integration. 

The complete formula for the relaxation rate (h = 0) is 

(4.18) 

and 

n ( ~ )  = [exp(2CZD&/T) -1I-l. 

Notice that allparametersin the integralappear togetherasasingle factor in the thermal 
distribution function. 

Before proceedingto adiscussionofnumericalresultsderivedfrom (4.8). we mention 
a pitfall in making a seemingly good approximation that brings (4.8) to the same 
appealing form as (4.15),  in  which E. is just a simple integral over Z2. For < # 0 we are 
preventedfrom obtainingsuch a result by the factor sin2 0 in the integrand, which arises 
from A: ,  in F(q, 4). It is then tempting to replace this angular factor by its spherical 
average, If this is done, A is an integral over P, given in (4.16), but the integral is 
divergent owing to the small-w behaviour of the integrand. 
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It is convenient to express the result (4.18) in the form 

dh = ( 2 r ‘ , ~ i c ~ f i / 3 ~ ~ D ) F c f )  (4.19) 

where the dimensionless variable 

f = (2f”DfT). 

The dependence of the integral F(f) on f is illustrated in figure 4. For small values off 
it increases like (iff)', which renders A independent of t and proportional to Tf; we 
find forf< 0.10 that to an excellent approximation 

F(f) = 0.862/f2 

which leads to 

A h  = (rou~fiT2/D’) X 4.63 x (4.20) 

In the other extreme, F ( f )  decays like (l/f)5/2, and the result 

F ( f )  = (1.36/f5!’) f-* 
for f = 10 agrees with the numerical value to within 2%. In view of the strong variation 
of F ( f )  we have chosen in figure 4 to display In F c f )  as a function off. 

We close this subsection with the observation that a fair estimate of Ah for the case 
when dipolar forces and an external field are important can be obtained from (4.15). 
Away from extremely low temperatures it is reasonable to estimate the spin-wave 
dispersion relation by 

(4.21) 

The last term in thisexpression, obtained by averaging the dipolar contribution in (3.2) 
overthedirectionsofk(Keffer1966),is just anaddition to theZeemanenergyin(4.15). 
Part of the justification behind such an approximate handling of the dipolar contribution 
to Ah is that we have proved, in this subsection, that dipolar forces on their own lead to 
a finite relaxation rate, i.e. they do control the potential divergence of the integral in 
(4.6). Yet more reassurance comes from the fact that, at high temperatures, d, does not 
explicitlydependonthestrengthofthedipolar forcebetween themagneticions. Indeed, 
the estimates (4.15) and (4.20) are quite similar. For EuO the dipolar contribution to 
the spin-wave dispersion (4.21) is only 6% of T,. 

The result provided in (4.15) is based on a density of states (4.14) derived using the 
long-wavelength approximation for the spin-wave energy, namely 

w k  = Dk2 + h + @d40gpB). 

Io*dwn(w)[l + n ( w ) ] Z 2 ( w ) =  (,$z)4) h(l - e-h’r)-i. (4.22) 

To gauge the influence of the approximation to the density of states the integral has been 
evaluated with the full density of states for EuO. In this exercise, dipolar forces were 
not explicitly included but the field was chosen to have the value 

h = %(?.JChf,gpB) = 0.093 mev. 

The ratio of the result obtained with the full density of states and the right-hand side of 
(4.22), evaluated for the same h,  is larger than unity for all temperatures, i.e. the 
approximate density of states (4.14) provides an underestimate of the integral. The ratio 
is 1.83 at T = 0. lT,, and saturates beyond 0.5TC at an average value of 7.2. Hence, the 
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correction is significant at higher temperatures. To account partially for the effect of 
spin-wave collisions, which are important at high temperatures (cf section 4.1), the 
calculation of the integral was repeated at T =  O.ST, for a field obtained from the 
measuredmagnetization M = 0.67MU(Passell efa11976) and low-temperatureexchange 
interactions; there was next to no change in the exact numerical value and the ratio 
decreased to the value 6.78. Softening the spin waves is not expected to influence the 
ratio very much since the spin-wave stiffness appears as a factor in the approximate 
expression provided in (4.22). 

S W Louesey et a1 

5. Conclusions 

A muon spin relaxation experiment on an ordered ferromagnet has been proposed 
with the aim of improving knowledge of spin fluctuations parallel to the easy axis of 
magnetization. Since many previous experiments have used neutron beam techniques, 
the relation between response functionsobserved in these and p s ~  experiments has been 
carefully established. 

Predictions for the dependence of the PLSR relaxation rate on temperature, magnetic 
field and dipolar interactions have been obtained from spin-wave theory. The latter 
should be perfectly reliable at temperatures small compared with the critical tempera- 
ture. But there are reasons why it might be accurate over a considerably wider tem- 
perature range, which stem from the fact that the relaxation rate is dominated by 
longitudinal spin fluctuations (Raman processes) and these involve two-spin-wave 
events, i.e. non-linear events. Hence, the evaluation of Raman processes in lowest 
order, as reported here, actually takes the level of calculation of the relaxation rate 
beyond the domain covered by linear spin-wave theory. 

The dipolar and hyperfine mechanisms for relaxation possess different charac- 
teristics. A potential divergence of the k integration in the formula for Ah is controlled 
by thedipolarforcesbetween themagneticions. However, at high temperaturesAhdoes 
not explicitly depend on the strength of the dipolar forces. There are no such subtle 
features about the dipolar contribution, at least when the muon occupies a site at which 
the average value of the dipolar field from the surrounding magnetic ions is zero. This 
property introduces in the k integral a function that controls the potential divergence 
seen in the corresponding formula for A,. In consequence, Ad has been estimated with 
simple ferromagnetic spin waves, and dipolar forces between magnetic ions are not 
included. If the ratio of the hyperfine and dipolar coupling constants for the muon is 
small, asit is expected to be in EuO, then the observed relaxation rate will be dominated 
by the dipolar contribution Ad, i.e. spin dynamics are not strongly revealed in the 
hyperfine contribution. 

The longitudinal spin fluctuationsof interest are createdby fluctuations in the dipolar 
field experienced by the implanted muon (which is assumed to be a perfectly passive 
probe of the ordered magnetic state). Given that the muon is equidistant from each 
coordination shell of atomic moments and zero-point motion of the muon is not influ- 
ential, our theory should cover all experimental geometries. The theory is presented in 
a form that makes a generalization to non-equidistant configurations relatively straight- 
forward. 

The magnetic salt EuO is of particular interest, and predictions for ~ S R  specific to it 
are presented. Many properties of EuO are firmly established, but neutron beam data 
on longitudinal fluctuations are not in accord with existing theoretical models. It is well 
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suited fOrpSR experiments for several reasons, including the fact that EuZ+ is an S-state 
ion, and thus quadrupole interactions will not complicate this interpretation of data. It 
is shown how the ~ S R  signal depends on the orientation of the muon beam relative to 
one of the easy axes, but this dependence is completely averaged out in a multi-domain 
sample. A predominance of one domain can possibly be achieved with a magnetic field 
of a strength so small that the Larmor frequency of the muon is negligible compared to 
electronic frequencies, in which case a properly shaped sample is required to avoid 
demagnetizing field in homogeneities. 

Experiments on such a sample will permit stringent tests of the influence of spin 
fluctuations on the muon spin relaxation in an ordered ferromagnet, and evidence for 
fluctuations in the dipolar field at the muon as the principal relaxation mechanism. 
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Appendix 

Here we provide formulae for the dipolar and hyperfine relaxation rates. It is assumed 
that identical magnetic ions are located at positions { l }  with respect to the implanted 
muon and / I (  = d. The magnetic moment carried by each ion is gFBS(f). Figure 1 
illustrates the configuration of the muon and neighbouring spins in EuO. 

The dipolar field at the muon is expressed in terms of spherical components of the 
spin operators by means of the standard expression 

(AI) 
In the last equality the spin operator is coupled to a spherical harmonic of rank two by 
a Clebsch-Gordon coefficient. We use the phase conventions employed by Edmonds 
(1960). 

Fluctuations in the dipolar field away from its average value produce a relaxation of 
the muon spin signal. For simple magnets it is likely that ( B )  = 0, and EuO is one such 
material. 

The relaxation rate A,, is obtained by a straightforward application of Fermi's golden - .. 
rule for the perturbation- 

%e = g p p N l  . B  (-42) 
where I is the muon spin operator. The muon Larmor frequency is set equal to zero in 
the following calculations, for reasons explained in the text, and the initial and final 
muon spin states are labelled by m and m', respectively. From (A2) we obtain 
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where the normalization is chosen such that Ad is the same as the conventional definition 
of l/Tl. 

If the muon spin axis is defined by polar angles (a, 6)  with respect to the crystal axes, 
the single spin-flip matrix elements required in (A3) are 

S W Louesey et af 

(m\lolm') = -tsinLu(mll-lm') 

in which 

(mll-lm')2 = ( I  + m + 1)(1- m). (A5) 

In fact, it is unlikely that the sample will be a single domain, or even possess a pre- 
dominant domain. Hence, for most cases of interest it is appropriate to average (A3) 
over the orientations of the muon spin. Using the result (A4) we obtain 

in which it remains to isolate the spin components that affect relaxation. 
For reasons given in the text, we select Raman processes that are described by the 

longitudinal spin correlation function (Sz(t)Sz), i.e. fluctuations along the easy axis. On 
inserting in (A6) the expression (Al) for BQ, and introducing the definition 

r =  t ~ g , ~ l ~ ~ , / f i d ~ ) ~  ('47) 

we are led to the result 

in which Q = 0, 21. 
Up to this point no mention of the configuration of the atomic spins has entered the 

discussion, other than that they are identical and equidistant from the muon. We 
continue for the special case when the average dipolar field at the muoniszero, achieved 
for a configuration { l }  that satisfies the condition 

E Y @ )  = 0. 
I 

We further assume that, as in the case of EuO, there are just two distinct spin correlation 
functions, namely the site-diagonal and nearest-neighbour functions. In this case (A8) 
reduces to 

Ad = E) 1-L dt(S'(m, t)Sz(m, 0) - Sr(m + 6. t)Sz(m, 0)) (4 - Q * ) ~ Y & ( l ) ~ * .  

For the configuration of spins illustrated in figure 1, which is believed to be appropriate 
for EuO, we find 

1.Q 

( A W  
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c l Y m 2  = (5/3n) (Al l )  

c lY;(f)l2 = (5/9n) 

I 

and 

I 

We conclude this discussion of the dipolar relaxation mechanism by providing the 
value of the coupling constant when the muon spin has a definite orientation specified 
by (CY, p) with respect to the crystal axes, and the easy axis (z axis) is along the EuO 
crystal (1 11) direction: 

r’ = (r/4)[3 + C O S ~ C Y  + 2s in2acos2 (~ /4  - p) - fisin(2ol) cos(+ + p)]. ( ~ 1 2 )  
Upon averaging r’ over the polar angles (a, p), r’ = r as expected. Note that if the 
muon and electronic spins are parallel, r’ = 3.5r. 

For the discussion of the hyperfine relaxation mechanism, let the easy axis ( z  axis) 
be defined by polar angles (8,  q) with respect to the crystal axes. The perturbation is 
then of the form 

% e =  c A I I - S ( I )  = B  cA,S’(I)I-[sin 8, cos p l ( c o s ~ c o s ~  - isinp) 
I I 

+ sin 8, sin pr (cos CY sin p + i cos p) - cos 8, sin CY] (A13) 
where the second equality is achieved by selecting the longitudinal spin components. In 
calculating the relaxation rate hh we begin by retaining just the site-diagonal spin 
correlation functions, and this gives 

where 

rh = ( ~ ~ ~ / 1 6 ) { 1  - [COS ecos a + sin @sin ecos(p - p)] ’ }  (AIS) 
in which No is the number of magnetic ions and 

To = 8(A/h)’. (‘416) 
Note that r;, vanishes for a collinear arrangement of the atomic and muon spins. For a 
multi-domain EuO sample ( N o  = 4) 

rb = + ( A / R ) ~ .  
It is relatively easy for this special case to calculate the cantribution to hh made by the 
next-nearest-neighbour spin correlation functions. The result 

Ah = (2) 1-1 dt(Sz(m, t)Sz(m, 0) + 3Sz(m + 6, t)Sz(m, 0)) (A17) 

corresponds to (A10) for the dipolar mechanism 
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